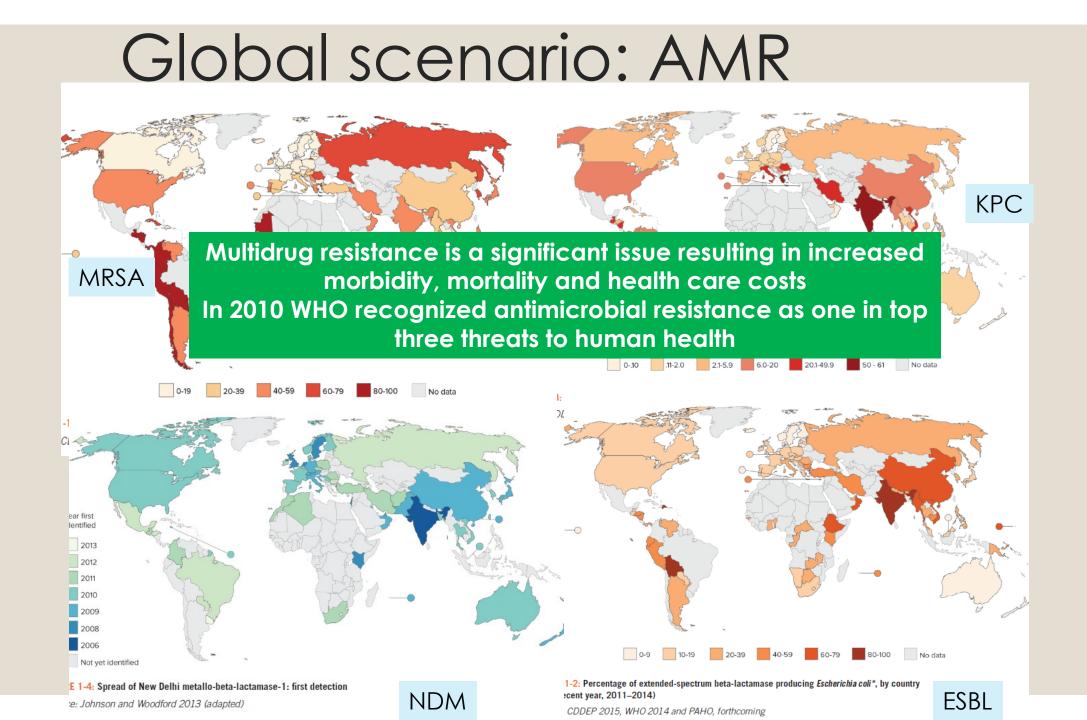
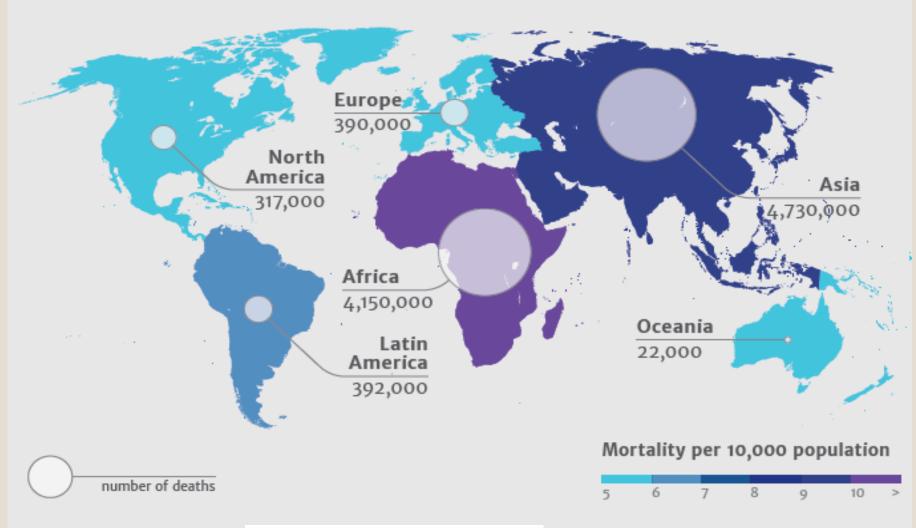
Integrated Activities and Tools for Antimicrobial Stewardship



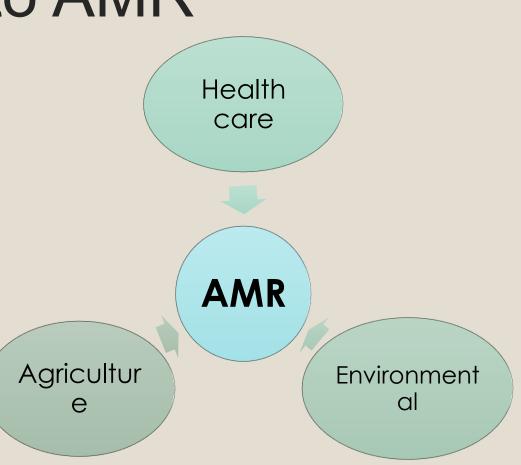
INTRODUCTION TO ANTIMICROBIAL STEWARDSHIP


Marcus Zervos, MD

Objectives

- 1. AMR Epidemiology & Impacts
- 2. Drivers of AMR
- 3. Common areas for improving antibiotic prescribing
- 4. Goals of stewardship
- 5. Intervention options
- 6. WHO AWaRe categories
- 7. Measurement components
- 8. Antimicrobial use surveillance/ Audits

MORTALITY IMPACT


From http://amr-review .org/file/437

IMPACT OF ANTIBIOTIC RESISTANCE ON PATIENT MORTALITY, LENGTH OF HOSPITAL STAY

INFECTION AND CAUSATIVE ORGANISM	INCREASED RISK OF DEATH (OR)	ATTRIBUTABLE LENGHT OF STAY (DAYS)
MRSA bacteremia	1.9	2.2
MRSA surgical infection	3.4	2.6
VRE infection	2.1	6.2
Resistant Pseudomonas aeruginosa infection	1.8 - 5.4	5.7 - 6.5
Resistant Enterobacter infection	5.0	9.0
Resistant Acinetobacter infection	2.4 - 6.2	5 - 13
ESBL-producing or KPC-producing Escherichia coli or Klebsiella infection	3.6	1.6-fold increase

Sectors contributing to AMR

At a societal level, complex and interlinking drivers are increasing the prevalence of antimicrobial-resistant microorganisms, predominantly arising from use in human beings and agriculture and the pollution of the environment.

Drivers of AMR

Inappropriate antibiotic use Health care transmissions

Environmental contamination

Travel

Gaps in public knowledge

Common areas for improving antibiotic prescribing

- Overprescribing
- Too broad spectrum
- Too many antibiotics or fixed dose combinations
- Wrong dose, wrong interval, wrong route
- Wrong duration
- Too slow (not started soon enough)

POOR USE OR ANTIBIOTICS BY PRESCRIBERS, DISPENSERS, COMMUNITY

CULTURAL BELIEFS & TRADITIONS	LACK OF APPROPRIATE KNOWLEDGE	UNTRAINED SOURCES OF ADVICE	MARKETING INFLUENCES
INCORRECT NORMS/ MODELS SENIORS	ECONOMIC FACTORS & INCENTIVES	FEAR OF POOR CLINICAL OUTCOMES	PATIENT/ CUSTOMER DEMAND

OTHERS MENTIONED: REGULATION / SUPERVISORY SYSTEMS / COMMUNICATION / UNSTABLE DRUG SUPPLY / LABORATORY SERVICES

6 Core strategies to combat AMR

REDUCE

the need for antibiotics through improved water, sanitation and immunization

IMPROVE

hospial infection control and antibiotic stewardship

CHANGE

incentives that encourage antibiotic overuse and misuse to incentives that encourage antibiotic stewardship

REDUCE

and eventually phase out subtherapeutic antibiotic use in agriculture

EDUCATE

health professionals, policy makers and the public on sustainable antibiotic use

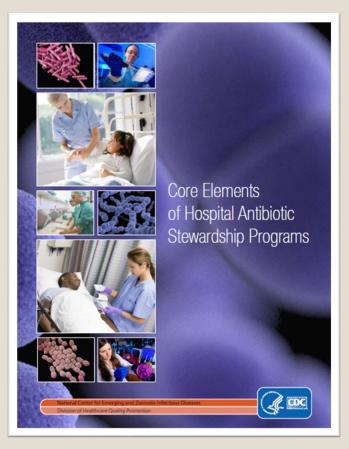
ENSURE

political commitment to meet the threat of antibiotic resistance

• ANTIMICROBIAL STEWARDSHIP AS ONE SOLUTION TO COMBAT AMR

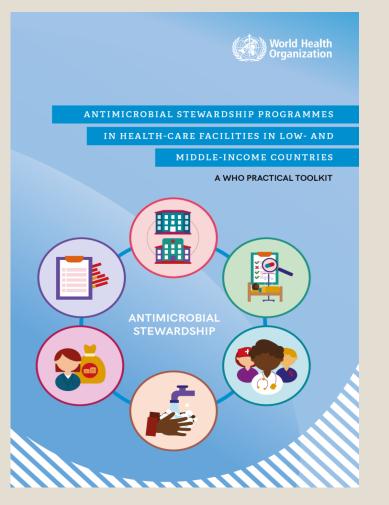
Definition

 " the <u>optimal selection</u>, <u>dosage</u>, <u>and duration</u> of antimicrobial treatment that results in the <u>best clinical outcome</u> for the treatment or prevention of infection, with <u>minimal toxicity</u> to the patient and <u>minimal impact on subsequent resistance</u>."


• Also defined as;

 "Organizational or healthcare system wide approach to promote and monitoring judicious use of antimicrobials to preserve their future effectiveness"

Clinical Definition


- "The Right Antibiotic
- For the Right patient
 - $\circ\,$ At the Right time
- With the Right dose
- And the Right route,
- $\circ\,$ Causing the least harm to
- The patient and future patients"

Core Elements of AMSP

Leadership Commitment Accountability Drug Expertise Action □ Reporting

WHO recent development

WHO POLICY GUIDANCE ON INTEGRATED ANTIMICROBIAL STEWARDSHIP ACTIVITIES

Interventions/ Actions

- Development of antibiotic guidelines/ SOPs
 - Local susceptibility/ antibiogram
 - Antimicrobial consumption
 - AWaRe Classifications
- Select and review charts
 - What is current practice? (surgical prophylaxis, antibiotic sensitivity testing)
 - What can we improve upon?
- Involve prescribers

ACTIONS: INTERVENTIONS

- Guidelines, policies, and protocols alone will probably not change practice
- Active interventions are most effective
 - Prospective audit
 - Formulary restriction and preauthorization
 - Antibiotic 'Time Out'
 - IV to oral switch
 - De-escalation therapy
 - Dose optimization

PROSPECTIVE AUDIT

- An physician reviews orders and intervenes with modification of order and feedback to prescriber
- **Results in improved use, decreased costs**
- □Caveats:
 - Time and labor intensive
 - Many settings do not have capacity
 - Providers may not be receptive

FORMULARY RESTRICTION AND PREAUTHORIZATION

- Specific antibiotics cannot be ordered without authorization
- Useful in response to healthcare-associated outbreak

AN ANTIBIOTIC 'TIME OUT'

- A concrete point in time dedicated to reviewing antimicrobial choice and duration
 - Reappraise therapy when more clinical data are available (usually in 48-72 hours)
 - Decide about continuation, narrowing therapy and specify a duration
- Recommended changes are better received and more likely to be followed at a later time point

PARENTERAL TO ORAL SWITCH

- Antibiotics with similar bioavailability
- Less side effects
- Less cost
- Shorter hospital stay

DOSE OPTIMIZATION

Optimization of AB dosing based on
Individual patient characteristics
Causative organisms
Site of infections
PK-PD characteristics
TDM is also an AMS strategy

Intervention options

Education

- Guidelines (include surgical, outpatient)
- Pre prescription review and restrictions
- Post prescription review (48 to 72 hrs)
- The "Time out" (48 to 72 hrs)
- Stop orders
- De escalation, redundant therapy
- IV to oral conversion
- Optimize dosing
- Audit and feedback (Ward rounds)
- Vendor restriction
- Use of EMR/ how IT can be of benefit
- Duration
- Allergy evaluation
- Regulatory

WHO Aware Categorization of Antibiotics

ACCESS GROUP (29 antibiotics)

First and second choice antibiotics for the empiric treatment of most common/relevant infectious syndromes (21 syndromes).

First choices are usually narrow spectrum agents with positive benefit-to-risk ratios, and low resistance potential, whereas second choices are generally broader spectrum antibiotics with higher resistance potential, or less favorable benefit-to-risk ratios.

WATCH GROUP (7 antibiotic classes)

Antibiotics with higher resistance potential whose use as first and second choice treatment should be limited to a small number of syndromes or patient groups.

These medicines should be prioritized as key targets of stewardship programs and monitoring.

RESERVE GROUP (8 antibiotics or classes)

Antibiotics to be used mainly as 'last resort' treatment options that could be protected and prioritized as key targets of high-intensity stewardship programs.

ACCESS GRO	OUP		
Amikacin	Cefalexin	Clarithromycin*	Nitrofurantoin
Amoxicillin	Cefazolin	Clindamycin	Phenoxymethylpeni cillin
Amoxicillin + clavulanic acid	Cefixime*	Cloxacillin	Piperacillin + tazobactam*
Ampicillin	Cefotaxime*	Doxycycline	Procaine benzyl penicillin
Azithromycin*	Ceftriaxone*	Gentamicin	Spectinomycin
Benzathine benzylpenicillin	Chloramphenicol	Meropenem*	Sulfamethoxazole + trimethoprim
Benzylpenicillin	Ciprofloxacin*	Metronidazole	Vancomycin*

WATCH GROUP

Quinolones and fluoroquinolones (e.g. ciprofloxacin, levofloxacin, moxifloxacin, norfloxacin 3rd-generation cephalosporins (with or without beta-lactamase inhibitor, e.g. cefixime, ceftriaxone, cefotaxime, ceftazidime)

Macrolides (e.g. azithromycin, clarithromycin, erythromycin)

Glycopeptides (e.g. teicoplanin, vancomycin)

Anti-pseudomonal penicillins with beta-lactamase inhibitor (e.g. piperacillin + tazobactam)

Carbapenems (e.g. meropenem, imipenem + cilastatin) and Penems (e.g. faropenem)

RESERVE GROUP

- Aztreonam
- 4th generation cephalosporins (e.g. cefepime) Fosfomycin (IV) Polymyxins (e.g. polymyxin B, colistin)

Daptomycin Sth generation cephalosporins (e.g. ceftaroline) Oxazolidinones (e.g. linezolid) Tigecyline

- Percentage of patients attending a primary health care facility receiving an antibiotic should be less than 30%
- Oral Watch antibiotics use globally is increasing
- Reducing the inappropriate use of Watch antibiotics is a critical strategy
- Ensure vulnerable populations have continued or, where appropriate, improved "<u>access to Access</u>" antibiotics
- WHO Global Programme of Work includes a target that at least "60% of total antibiotic prescribing at the country level should be Access antibiotics by 2023"

Measures of Antimicrobial Use

- DDD per 1000 patient days
- DDD per admission
- Days of Therapy per 1000 patient days
- Proportion of DDD in ACCESS, WATCH, RESERVE and other categories
- Documented indication for use
- Stop/review date
- Compliance with guidelines (including surgical)
- Length of therapy
- 48-72 hour review
- Deescalation
- IV to oral switch

AMU Surveillances/ Audits

Point prevalence surveys on AMR and AMU
Surgical Prophylaxis audits
Prospective audit data collection for analysis and sensitization of staffs

- sensitization of statts
- Guideline compliance

Point Prevalence Surveys

Snapshot survey

Twice a year to show seasonal variation

- □ WHO PPS protocol
- Global PPS protocol

National antimicrobial prescription survey (NAPs) Australia

Prospective Audits

o "Start Smart and Then Focus"

- 1. Documentations
- 2. Culture of Culture
- 3. Allergy
- 4. Mismatch "bug and drug"

Guideline Compliance

- a) Appropriate (Optimal & Adequate)
- b) Inappropriate (Suboptimal & inadequate)
- c) Not assessable
- i) Optimal : Antimicrobial prescription follows the endorsed local guidelines/ SOP optimally, including antimicrobial choice, dosage, route and duration
- ii) Adequate: Antimicrobial prescription does not optimally follow the endorsed local guidelines, including antimicrobial choice, dosage, route or duration, however, is a reasonable alternative choice for the likely causative or cultured pathogens OR For surgical prophylaxis, as above and duration is less than 24 hour

Inappropriate

- i) Suboptimal : Antimicrobial prescription including antimicrobial choice, dosage, route and duration, is an unreasonable choice for the likely causative or cultured pathogens
- ✓ spectrum excessively broad
- ✓ unnecessary overlap in spectrum of activity
- ✓ dosage excessively high or duration excessively long
- ✓ failure to appropriately de-escalate with microbiological results
- ii) Inadequate: Antimicrobial prescription including antimicrobial choice, dosage, route or duration is unlikely to treat the likely causative or cultured pathogens

 $\circ OR$

The documented or presumed indication does not require any antimicrobial treatment

 \circ OR

- There may be a severe or possibly life-threatening allergy mismatch, or the potential risk of toxicity due to drug interaction OR
- For surgical prophylaxis, the duration is greater than 24 hours (except where local guidelines endorse this)

Not Assessable

 \circ The indication is not documented and unable to be determined from the notes

 $\circ OR$

• The notes are not comprehensive enough to assess appropriateness

 $\circ OR$

 The patient is too complex, due to multiple co-morbidities, allergies or microbiology results

Antimicrobial stewardship + Infection control program

LIMITS THE EMERGENCE AND TRANSMISSION OF ANTIMICROBIAL-RESISTANT BACTERIA